
Fluxed Animated Boundary Method

ALEXEY STOMAKHIN and ANDREW SELLE?, Walt Disney Animation Studios

We present a novel approach to guiding physically based particle simula-
tions using boundary conditions. Unlike commonly used ad hoc particle
techniques for adding and removing the material from a simulation, our
approach is principled by utilizing the concept of volumetric �ux. Artists
are provided with a simple yet powerful primitive called a �uxed animated
boundary (FAB), allowing them to specify a control shape and a material
�ow �eld. The system takes care of enforcing the corresponding boundary
conditions and necessary particle reseeding. We show how FABs can be used
artistically or physically. Finally, we demonstrate production examples that
show the e�cacy of our method.

CCS Concepts: • Computing methodologies → Physical simulation;
Animation;

Additional Key Words and Phrases: physical simulation, control, art-direction,
FLIP, APIC, MPM

ACM Reference format:
Alexey Stomakhin and Andrew Selle?. 2017. Fluxed Animated Boundary
Method. ACM Trans. Graph. 36, 4, Article 68 (July 2017), 8 pages.
DOI: http://dx.doi.org/10.1145/3072959.3073597

1 INTRODUCTION
Natural phenomena are compelling, important, and pervasive
throughout computer graphics. While physical simulation is guar-
anteed to produce a plausible and realistic simulation, artists are
paradoxically forced to continually re-run simulations to target
story and director needs—the process of art-direction. Developer
and artist time spent on art-direction far exceeds the e�ort required
for core simulation technology.

Art-direction is achieved either by internal forces and constraints
or by boundary conditions. The former is useful and direct but
when overused undermines scene realism. The latter prescribes
the connection between simulated material and the wider world—
abstracting far-�eld details into the minimal information needed
for simulation. Moreover, it will always be impossible and undesir-
able to simulate the whole world, so the rest of the world must be
kinematically described or described with a lower resolution simula-
tion. The most common boundary condition controls are kinematic
solids, sources, and sinks, and these tend to create more realistic,
naturalistic simulations.

Volumetrically de�ned boundary conditions were used frequently
for Eulerian (grid) solvers, but have been downplayed in more recent

? Andrew Selle is currently a�liated with Google.

All images ©Disney Enterprises, Inc.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2017/7-ART68 $15.00
DOI: http://dx.doi.org/10.1145/3072959.3073597

Fig. 1. Examples of fluxed animated boundary (FAB) method used for open
water simulations in Disney’s Moana. Each image contains a simulated boat
wake and the top image additionally features a fully simulated breaking
barrel. ©Disney

Lagrangian (particle) solvers. FLIP/APIC and SPH solvers advocate
simple creation and deletion of particles, which makes life seemingly
simpler for an artist—a major source of the solvers’ popularity. Any
artist that knows how to use ubiquitous particle tools [Reeves 1983]
can create and destroy �uid. Accurate sinks and sources, however,
are not correctly modeled without the concept of volumetric �ux.
The e�ect is that artists using stock tools often embrace simple
particle methods and live with poor boundary conditions. Even
worse, practitioners tend to consider boundary conditions only
of discrete objects like “the water” or “the collision object”. This
misses the possibility of amorphous boundaries that change the
active subset of material being simulated. In particular, the view
fails to help de�ne the connection between simulated �uid and
non-simulated �uid in an open ocean example (Figure 3b).

To solve this volumetric control problem for particle solvers, we
introduce the �uxed animated boundary (FAB) method. An artist pro-
vides an animated shape and a material velocity �eld. The animated

ACM Transactions on Graphics, Vol. 36, No. 4, Article 68. Publication date: July 2017.

68:2 • Stomakhin, A. and Selle, A.

time n-1 time n

time n+1

deleted material
material to create

Fig. 2. A schematic illustration of a windowed simulation. An artist specifies
a window shape that bounds an active simulated subset of the material
local to a character. The material velocity field is specified on the outside,
corresponding to the desired prescribed motion of the material. The goal is
to make the transition of the material between being simulated and not as
seamless as possible, regardless of the motion of the window. ©Disney

shape describes how the window bounding the active simulated
subset changes over time, and the material velocity describes the
prescribed motion of the material on the outside, see Figure 2. Given
these primitives, the method integrates with standard FLIP, APIC or
MPM solvers, see [Jiang et al. 2015], while automatically handling
particle reseeding. Artists used this method on Disney’s animated
�lm Moana, �nding it massively more intuitive and higher quality
than particle-based control.

Our contributions are:
• An e�ective artist friendly volumetric control.
• Accurate particle reseeding in FLIP/APIC/MPM.
• A family of physical FABs including Stokes waves and deep

water waves.

2 PREVIOUS WORK
3D liquid simulation was introduced to graphics by [Foster and
Metaxas 1997], who also introduced a simple control mechanism.
As �uid simulation became popular, �uid control was a common fo-
cus. Researchers showed how to match prede�ned shape keyframes
[Hong and Kim 2004; McNamara et al. 2004; Treuille et al. 2003]
and moving target shapes [Fattal and Lischinski 2004; Shi and Yu
2005a,b]. In visual e�ects, many practitioners have used these or
similar techniques to build �uid characters [Sachs et al. 2010; Tro-
jansky 2008; Wiebe and Houston 2004]. Despite being useful for
characters, these techniques often make naturalistic �uid animation
look over-controlled and unrealistic.

Consequently, many authors aiming for naturalistic �uid focus in-
stead on di�erent techniques. Several approaches allow augmenting
a low resolution simulation with high resolution detail [Kim et al.
2008; Thürey et al. 2006; Yuan et al. 2011]. Alternatively, [Mihalef
et al. 2004] allowed artists to explore fast 2D �uid wave simulations
to choose initial conditions for 3D �uid waves. In reverse, [Horvath
and Geiger 2009] showed how procedural 3D particles could be
used to great e�ect to drive �lm resolution camera-aligned 2D �uid
simulations. While resolution enhancement and partitioning can be
useful, they do not fundamentally solve the problem of improving
the accuracy of a windowed simulation setup.

Toward this, several works consider handling the boundaries
of simulation for control. [Rasmussen et al. 2004] used particles to

enforce soft and hard controls in a grid-based liquid solver. They em-
ploy Neumann boundary conditions in a volumetric region around
each kinematic particle. These are then used as sources, sinks or
collision objects. While these are useful primitives for enforcing
boundary conditions, they do not consider systematic uni�cation of
these controls.

We were inspired by [Nielsen and Bridson 2011], which sug-
gests that low resolution simulation can guide higher resolution
simulation. They provide an algorithm to codify the artist practice
of hiding unnoticeable kinematic collision objects underwater for
control. In particular, the low resolution simulation is eroded to a
kinematic inner core that also measures how much �uid is entering
and leaving the core. The surface of this inner core is the window
between a non-simulated part of �uid and the simulated part of
�uid, so it is actually more than a collision object. This has a huge
computational advantage, because the number of simulated high
resolution particles grows more like surface area rather than volume.
While this paper is inspiring, its method for de�ning the inner core
is relatively in�exible. It does not address the problem of interfacing
with the wider ocean, and it doesn’t consider the possibility of an
artist controlling the window region explicitly.

Several techniques allow creating a 3D windowed simulation.
Pixar’s Brave used a low-resolution river simulation to seed a
high resolution detail simulation around characters [O’Brien 2013].
[Thürey et al. 2006] two-way coupled 2D shallow water with a 3D
solver. However, most practitioners cheat by simulating a boat in
3D on a �at plane of water and adding Tessendorf displacement
post-sim. This works well if the boat is large compared to the waves
or the waves are small compared to the boat. Re�ecting waves are
still a problem but can be handled by perfectly matched layers (PML)
[Söderström et al. 2010]. While [Bojsen-Hansen and Wojtan 2016]
generalized PML to non-�at procedural water, it only works for
cubic domains. Recently, Autodesk’s Bifröst framework (see e.g.
[Nielsen and Bridson 2016]) provided a system for combining ocean
simulations with near-�eld simulations, but details of the underlying
algorithm are not published or described in detail.

3 MOTIVATION
Consider an art-direction problem: given an animated boat, a proce-
dural ocean surface (Figure 3a), and a simulation window, produce
a �uid simulation matching the ocean while also interacting with
the boat (Figure 3b). Since we desire a naturalistic result, we choose
a boundary condition approach rather than internal forcing. For
simplicity, we �rst consider a windowed simulation without the
boat (Figure 3c). That is, our simulation should match the proce-
dural motion on the subdomain it replaces. For further simplicity,
consider a calm and �at ocean (Figure 3d) with zero velocity and
height. A popular and naïve approach de�nes the window as a box
where the bottom and side walls are collision objects. When the
simulation window moves, liquid particles are forced to move with
the window rather than remain still. A correct approach instead
sources material ahead of the window and sinks material behind the
window (e.g. an Eulerian open water boundary). In Lagrangian sim-
ulation, velocities of the particles are initialized with a prescribed
ocean velocity independent of the window motion.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 68. Publication date: July 2017.

Fluxed Animated Boundary Method • 68:3

(a) Input: animated boat, procedural ocean (b) Windowed simulation only near boat (c) Simulate sans boat, perfect match possible (d) Simulate sans boat, sans waves. simple.

Fig. 3. Simulating a boat on an open water surface. ©Disney

simulation kill/bounding box
FAB shape

FAB material velocity

simulated fluid

Fig. 4. An open water simulation setup with FAB method. ©Disney

Now, return to a more realistic procedural ocean (Figure 3c). If the
procedural waves come from a valid [Tessendorf 1999] spectrum,
they correspond to a physical motion of water, so our simulator
should replicate the ocean, given correct velocity boundary con-
ditions. Some parts of the boundary need to act as sinks, some as
sources, some as kinematic solids. However, simply constraining
the boundary to be the world velocity prescribed by the procedural
ocean covers all cases. See Sections 4 & 5 for more details. In partic-
ular, we show how to obtain a full �eld of Tessendorf and Stokes
velocities rather than merely surface velocities. Correct boundary
velocities are key to preserving the ocean spectra structure.

Given this setup, we now put the boat back (Figure 3b). Its motion
could be hand-animated, two-way coupled with the �uid, or pro-
duced via a buoyancy simulation. However de�ned, the motion will
disturb consistency between the simulation and the larger ocean
due to [Tessendorf 1999] assuming no obstacles. The e�ects of this
mismatch are small but are further minimized by constructing the
window shape to become shallow on the edge of the simulated
region. The velocities near this shallow area may also be damped
toward the velocity of the ocean. Extending PML [Söderström et al.
2010] to our irregular shapes would be interesting future work to
investigate, but we found our simple damping worked su�ciently
well for our needs.

4 OUR METHOD
Now, consider the practical details of our method. Creating a win-
dowed simulation requires specifying the window’s shape and the
material velocity on its boundary for every point in time. However,
part of the window may not be immersed in the material, as shown
in Figure 3, so we limit the in�uence of the outside material to only
certain parts of the window boundary. Speci�cally, an artist creates a
set of control volumes called FABs that bound regions of the window
containing material. They must have precise shape and material
velocity at the boundary of the simulation window. Elsewhere, they
can have arbitrary shape, e.g. truncated to have �nite support. The
simulated region then is the subset of space containing material
(particles) but not contained in any FAB. Note that although mate-
rial velocity is formally only required at the window boundary, in
practice it is typically available throughout the whole volume of a
FAB. This proves to be especially useful with �nite timestepping, so
we will assume a volumetric de�nition in what follows.

Figure 4 illustrates how a FAB can be used to set up a boat wake
simulation from Figure 3b. As before, the �uid is simulated only in a
bounded region around the boat, but now it is “contained” by a FAB.
The shape of the FAB represents the outside of the simulated region
around the boat. Note that only the material part below the ocean
surface is represented, and that it only represents �nite rather than
in�nite support. Finite support is obviously useful for e�ciency and
is not strictly required in general. Also a kill box may be employed
to remove stray FLIP particles. We tend to make it somewhat wider
than the simulation region. The FAB material velocity represents
the motion of the ocean inside of the shape and is used to enforce
the boundary conditions and for the material set update: sourcing
and sinking.

advection
material
set
update
*

Grid
view

Particle
view

5 6
application
of
forces

boundary
value
solve
*

1

3

rasterize interpolate2 4

mesh
based
FAB

rasterize

grid-based
FAB

Fig. 5. FLIP/APIC/MPM solver time step structure augmented with FAB.
Steps with the asterisk are the only ones a�ected by the FAB method.
©Disney

4.1 Integration within solver
We now describe how to integrate FABs into an existing FLIP, APIC,
or MPM solver, for which typical high-level time integration steps
are shown in Figure 5. A time step starts with applying forces, such
as gravity, to particles. The particles are then rasterized to a grid,
allowing a boundary value solve to update velocities. We use Poisson
projection for inviscid �uids and a stress-based solve for solids and
viscous �uids. Grid velocities are then interpolated back to particles;
particles are then advected. Finally, the material set is updated by
deleting unneeded particles and adding required new particles. Note
our method is also easily adaptable to other simulation loops. In
our loop, FABs only a�ect steps 3 and 6: boundary value solve and
material set update.

During the boundary value solve, FABs provide a Neumann
pressure boundary condition for Poisson projections and a Dirichlet
velocity boundary condition for stress-based solves. This is analo-
gous to kinematic solid boundaries [Bridson 2008], with the caveat
that we sample the material velocity rather than the shape velocity.

The material set update adds and removes particles. Particles
that end in a FAB after advection are deleted. Particles should be

ACM Transactions on Graphics, Vol. 36, No. 4, Article 68. Publication date: July 2017.

68:4 • Stomakhin, A. and Selle, A.

seeded when material starts inside a FAB but is advected to be
outside. [Nielsen and Bridson 2011] propose an approach to seeding
for their low-resolution guide objects based on level sets. They
advect the low-resolution guide object by the low-resolution �uid
�ow and seed in the level set di�erence region. We found this grid-
based approach to introduce aliasing and accuracy problems, even
with the dilation/erosion operations they suggest to compensate
for these problems. We found a simple and accurate alternative. We
create temporary particles inside the FABs at time t and advect them
with the sampled material velocity. If after advection at time t + ∆t
they end outside the FABs, we seed them as new active simulation
particles, otherwise we discard them. This is illustrated in Figure 7.

4.2 Discussion
Given the FAB implementation, we can express many familiar simu-
lation primitives using them. For example, if the normal component
of the material velocity exceeds that of the velocity of the shape,
the FAB would act as a source. If it is less, the result is a sink. If they
match, the object acts as a kinematic solid. Thus, FABs can be con-
sidered as a generalization of well-known concepts of sources, sinks,
and kinematic solids, alleviating the need for separate controls. An
artist can work directly with the shape and material velocity �eld,
and let the system handle the rest. Figure 6 shows typical behaviors
FABs may exhibit during simulation.

0

0

0

0

0

1 0 1 1/2 1

1 1 0 1 1/2

Shape
Velocity

Material
Velocity

00

0

0

0

0

0

t=0 t=1 t=0 t=1

0

t=0 t=1 t=0 t=1 t=0 t=1 t=0 t=1

00 0

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

Fig. 6. Example behaviors exhibited by six non-deforming FABs with pre-
scribed material/shape velocities. All FABs have the same position and
shape at time t = 0 but di�erent final time t = 1 configurations. Notice how
the relative velocity between material and shape determines the sourcing
behavior. The color encoding matches that of Figure 4. ©Disney

4.3 E�icient reseeding
While one can trivially seed particles into FAB shapes completely,
it is much more e�cient to take advantage of the CFL condition
by only seeding in a thin band around the FAB surface. In practice,
we use a VDB, see [Museth 2013], to represent the shape and per-
form seeding only through its active voxels. The VDB also gives us
performant inside/outside tests.

The FAB shape and material velocity must be available at arbi-
trary times since solvers operate adaptively according to the CFL
condition. Analytic kinematic shapes or ultra-�ne pre-baking are
not practical in production, where animation is done at coarse 24

FPS time steps. Thus, users provide a shape velocity (usually com-
puted with �nite di�erences), allowing advection of the shape VDB
to an arbitrary time. Even so, advecting a high resolution VDB is ex-
pensive. Level set interpolation [Selle et al. 2008] can speed up inside
tests for removing particles, but for seeding we need an e�cient way
to determine the sparse active set of voxels at the interpolated time.
Thus, we propose a hybrid method. We downsample the level set
and advect it e�ciently. Upsampling this advected low-resolution
result gives us a valid set of active voxels. Lastly we reinitialize its
SDF values to be more accurate using level set interpolation.

time t=0
Seed temporary
particles

final reseed
and delete

temporary reseed particles
active liquid particles

new seeded liquid particles
shape velocity
material velocity

a aab Advect to
time=1

c d

Liquid
FAB

Fig. 7. Automatic FAB seeding and particle deletion. ©Disney

4.4 Creating a material velocity field
As discussed above, a material velocity �eld needs to be available for
sampling in a thin band around the corresponding FAB, typically a
few cells wide, depending on the CFL. When an analytic expression
is unavailable, it is often practical to compute the material velocity
on discrete particles. Accuracy is su�cient if the inter particle-
spacing is commensurate with the solver grid cell size. If the material
velocity computation is only available on the surface of the FAB, we
simply use nearest neighbor sampling to extend it. Finally, particle
velocities are rasterized to a VDB volume for e�cient simulation-
time lookup.

4.5 Artistic applications

Fig. 8. An example of artistic FAB
application. ©Disney

The artists who tested FABs
found the shape and material
velocity controls to be very
intuitive. They found many
immediate uses, like creat-
ing the water creature shown
in Figure 10. They started
with a sculpted shape with
no surface detail and painted
curves on its surface that rep-
resented the desired material
�ow. A noise was applied to
the curves to add interesting
detail, and the tangents were
sampled on tubes of particles

around the curves and rasterized to a volume to create a material
velocity �eld. The simulation was run with no gravity and had a
very weak force �eld pointing towards the shape to avoid stray par-
ticles. The FAB method allowed the force �eld to be small, yielding
a naturalistic rather than over-controlled look. Figure 8 shows a
production image created with FAB.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 68. Publication date: July 2017.

Fluxed Animated Boundary Method • 68:5

(a) Procedural Stokes Wave (b) Hand-modeled FAB simulation (b) Stokes FAB simulation (b) Deep water FAB simulation

Fig. 9. Open ocean FAB simulations. Physical and accurate material velocity is required for matching the procedural surface. ©Disney

Fig. 10. Making a water creature: sculpted shape with material velocity
curves painted by an artist (le�), FLIP/APIC simulation with FAB (center)
and a meshed result (right). ©Disney

5 PHYSICAL SIMULATION WITH FAB
The water creature example from Figure 10 demonstrated artistic use
of FABs: the shape and the material velocity were driven creatively
achieving a “magical” e�ect. Non-fantastical scenarios such as a boat
on open water require the motion and hence the material velocity
to be physically accurate. Otherwise, seaming and other artifacts
will be present. We found that hand-modeling of material velocities
was infeasible for an artist to perform with su�cient accuracy. In
the following we present methods and techniques for producing
two important types of FAB: Stokes waves and deep water waves.

5.1 Swells and Stokes waves
Swells are gravitational waves propagating along the ocean sur-
face. They are typically generated by distant winds and may travel
long distances without signi�cant change in shape [Young 1999].
A Stokes wave is a good approximation for a swell [Stokes 1847].
It is a non-linear and periodic surface wave on a �uid layer of con-
stant mean depth representing a potential �ow solution to inviscid
Navier-Stokes equation. An example of a Stokes wave is shown in
Figure 9a. A closed-form representation for a Stokes wave is not
known but several approximations exist. In particular, for an ocean
of in�nite depth [Dingemans 1997] provides

Φ(x , z, t) = aω
k ekz sin(kx − ωt), (1)

with dispersion relation ω2 = дk and the following notations

Φ velocity potential, velocity v = ∇Φ
x horizontal coordinate
z vertical coordinate, with the positive direction upward

and z = 0 corresponding to the mean surface value
t time
a amplitude
k wavenumber, k = 2π

λ , where λ is the spacial wavelength
ω frequency, ω = 2π

τ , where τ is the temporal period
д magnitude of gravity

Any combination of parameters a and λ leads to a unique and phys-
ically correct Stokes wave, provided it satis�es the steepness con-
straint

2aλ
(
1 + 3

2 (
a
λ)

2π 2
)
< .1412 ⇐⇒ a

λ < 0.069, (2)

which prevents excessive amplitude relative to wavelength. The
constant on the right was determined numerically by [Michell 1893].

Unfortunately, the approximation is not a closed-form expression
of the water surface—requiring us to derive more simpli�cations.
The motion of a Lagrangian �uid particle in a Stokes wave is given
by

ẋ = ∂Φ
∂x ≡ aωekz cos(kx − ωt),

ż = ∂Φ
∂z ≡ aωekz sin(kx − ωt).

(3)

While integrating this numerically is possible, we desire a closed-
form solution. Given (2), the wave amplitude is small compared to
its length, allowing us to assume ekz is nearly constant, yielding{

x (t) = −aekh sin(kx0 − ωt),
z (t) = aekh cos(kx0 − ωt),

(4)

where x0 is the reference horizontal position andh is the mean depth
of a Lagrangian particle, with h being negative in the �uid volume
and 0 on the surface. The di�erence between (4) and numerical
integration of the ODE (3) is insigni�cant, manifesting itself mainly
in disregarding the Stokes drift [Stokes 1847]. In fact, we found
nearly perfect matching results between procedural surface and
FAB simulation in the absence of the boat. With the boat, the error
is dominated by the presence of the boat and requires additional
post-process blending. Above all, (4) being closed-form allows us to
combine it with the deep water waves directly.

We now have all the ingredients to make a FAB. The material
motion is given by (4). In practice, we seeded particles in a region,
deformed them with (4), de�ned velocities using �nite di�erencing
and rasterized them to a volume. Alternatively, one could de�ne the
material velocity by analytically di�erentiating (4) with respect to t .

5.2 Deep water waves
While the most popular ocean wave model is the one given in
[Tessendorf 1999], [Horvath 2015] recently introduced more varia-
tions on the wave spectrums. Even so, both papers merely advocate
the use of di�erent statistical distributions of wavelengths, while the
basic idea remains the same: deep water oceanic waves are just a su-
perposition of multiple Stokes wave approximations (4), or Gerstner
waves if only the surface is considered, i.e. h = 0, see [Fournier and
Reeves 1986]. A practical way to compute the deep water surface
displacement is given in [Tessendorf 1999]. A Fourier transform
produces multiple sine waves, and a post-sharpening turns those
into Gerstner waves.

Previously, only the deep water surface was considered; however,
to create a FAB, we need velocities (and hence displacements) at

ACM Transactions on Graphics, Vol. 36, No. 4, Article 68. Publication date: July 2017.

68:6 • Stomakhin, A. and Selle, A.

(a) Input boat animation and surface (b) Low-pass filtered surface (closeup) (c) FAB from eroded surface (d) FAB material velocity (closeup)

(e) FLIP/APIC FAB simulation (closeup) (f) Blended and meshed (g) Final Render (h) Final Render (closeup)

S
E
T
U
P

O
U
T
P
U
T

Fig. 11. Stages of simulating a boat on deep water waves. ©Disney

other heights. Computing displacement at mean depth h is accom-
plished by prescaling the frequency domain distribution coe�cients
by ekh , similar to (4). However, Fourier transforms for many values
of h would be too costly, so we found that linearly interpolating
between only a few discrete depths was su�ciently accurate. Re-
gardless of the computational approach taken, the �nal deep water
expression is similar in spirit to (4), giving the displacement for La-
grangian particles of the �uid, and so material velocity computation
can be carried out in exactly the same way as for the Stokes waves.

6 EXAMPLES

6.1 Simulating a swell
Now we will detail exactly how to create a windowed Stokes wave
simulation using FABs. Using a deep water spectrum instead of a
Stokes wave is completely analogous. We de�ne the static window
using a bounding box (Figure 12a), and we clamp it to the static water
level, corresponding to h = 0 (Figure 12b). We then erode the box to
get the FAB shape and make a cavity for simulated water (Figure 12c).
To make a simulation on a Stokes wave, we simply apply transform
(4) to the simulated region shape and the FAB shape (Figure 12d).
Note, that the transform needs to be applied to the shape separately
for all simulated frames, since it varies with time. Similarly, the
material velocity �eld can be created by seeding auxiliary particles
into the undeformed FAB (Figure 12e), deforming them with (4) to
represent the actual FAB shape (Figure 12f) computing velocities
using �nite di�erences or by analytic di�erentiation, and rasterizing
to a volume (Figure 12g). Figure 9b shows how inaccurate and non-
physical FAB setups may cause a mismatch between a simulation
and a procedural surface. This may occur for multiple reasons, such
as inaccurate material velocity, violated steepness constraint (2), or
wave frequencies exceeding the simulation grid’s Nyquist limit. We
found that the Stokes wave length should be at least several grid
cells wide to avoid severe numeric dissipation. Figure 9c shows a
properly set up FAB simulation with Stokes waves giving a perfect
match with the procedural surface.

6.2 Boat wake on an ocean surface
As mentioned earlier, deep water waves such as the ones presented
in [Tessendorf 1999] are just a superposition of multiple Stokes

water level

input bounding box

clamped bounding box

water level

a b

c d

e f

static lake FAB shape Stokes wave FAB shape

simulated region simulated region

Stokes
expression

auxiliary particles seeded
inside FAB shape

deformed particles move with
material velocity

Stokes
expression

g

material velocity
field

rasterize to
a volume

Fig. 12. A FAB simulation setup with Stokes waves: (a) input bounding
box, (b) box clamped to height 0 (c) eroding the box gives FAB shape and
simulated region for a static lake, (d) deforming with Stokes expression gives
FAB shape and simulated region for a swell, (e) auxiliary particles seeded
into the static lake FAB shape, (f) particles deformed with Stokes expression
get material velocity, (g) material velocity rasterized from particles to a
volume. ©Disney

waves, and hence a FAB simulation can be set up in a similar way.
Figure 9d shows a FAB simulation for a superposition of several
Stokes waves giving a perfect match with the procedural surface.
It is worth emphasizing, that in order to have a physically correct
deep water expression, each component of the spectrum must satisfy
the steepness constraint (2). Otherwise, there are no guarantees of
reproducing its behavior through simulation. Like in the Stokes
wave example, a deep water spectrum may contain frequencies that
exceed the Nyquist limit of the simulation FLIP/APIC grid, causing
mismatch and aliasing. A practical way do deal with this is to low-
pass �lter such wavelengths before simulation and reapply as a
post-process displacement later. Figure 11 shows all of the setup
stages for simulating a boat on deep water waves.

6.3 Breaking wave
A breaking wave is fascinating. It starts as a swell away from shore,
begins overturning as it gets closer, and �nally becomes turbulent

ACM Transactions on Graphics, Vol. 36, No. 4, Article 68. Publication date: July 2017.

Fluxed Animated Boundary Method • 68:7

(a) Traveling stokes wave slice (b) Breaking stokes wave slice

(c) Breaking barrel simulation by varying parameters along the wave

particles meshed whitewater

Fig. 13. Simulating a breaking wave with FABs. ©Disney

and chaotic. Typically, movie shots impose requirements on when
and how a wave breaks, leading artists to use procedural rather
than simulation tools to create them. Proceduralism, however, limits
realism and complexity, forcing artists to mask lack of detail with
arti�cial secondary passes. Thus, we propose a fully simulated ap-
proach to creating controllable breaking waves using FABs. We start
by simulating a traveling swell. We simulate one isolated period of
a Stokes wave. Since Stokes waves move with constant velocity, it
is bene�cial to perform the simulation in the frame of reference of
the wave to avoid dealing with a moving window. Figure 13a shows
a possible setup for the simulation: a period of a Stokes wave, sur-
rounded by a static FAB. With this setup, the simulated wave would
persist over time without changing its shape. To break the wave it
su�ces to change the boundary conditions to the ones that violate
the steepness constraint, see Figure 13b. By varying the conditions
along the wave we were able to achieve complex e�ects such as a
sur�ng tube, breaking from one end, see Figure 13c. The render is
shown in Figure 1 (top).

7 IMPLEMENTATION NOTES

7.1 Simulator modification
Modifying a simulator to implement our technique is easy to do,
but we stress the key to its utility is making sure authoring material
velocities is a �rst-class interface element.

User interface. We created a Houdini interface where artists
authored deforming meshes that allowed �nite-di�erence based
shape velocities to be calculated. Artists could augment meshes
with a material velocity on the mesh or by using free-particles. In
either case, the material velocity would then be rasterized to a VDB.
Pressure projection modi�cation. We modi�ed the velocity

projection to sample material velocities instead of shape velocities
at points within the kinematic solid.
Seeding modi�cation. We added a new seeding scheme that

replaced the ad hoc particle creation [Reeves 1983] techniques used
before.
FAB examples. We provided Stokes and Deep Water examples

to artists. Lead artists then created rigs that eased repeated appli-
cation of similar situations. In addition, sources and sinks were
implemented in terms of FABs within the interface.

7.2 Blending and meshing
Blending and meshing are important to achieve �nal seamless inte-
gration with the far �eld. One of the goals of our method is to enable

getting good results with the simplest blending techniques available.
One key strategy for improving blending is preconditioning �nal
simulated particles to match the far surface. This ensures that when
the particles are meshed, outlier particles do not perturb the surface.
Particles were meshed using [Yu and Turk 2010] and unioned with
the FAB volume (Figure 11f). At render-time, we created a frustum
aligned voxel grid and resampled the FAB and the far-�eld height
�eld to a grid. At this point there was a tiny mismatch due to the
height�eld only approximating the signed distance, so we alpha
blended near the FAB boundary to get �nal signed distances yielding
the �nal render surface (Figure 11g).

7.3 Deep water spectrum
Deep water methods [Horvath 2015; Tessendorf 1999] typically
specify coe�cients of the water spectrum in the frequency domain
and use a Fourier transform to obtain displacement. This sum of
sine-waves is then sharpened to obtain Stokes waves. Band-pass �l-
tering operations in the frequency domain are trivial, requiring only
setting the undesired bands to 0. For the boat wake setup, we �ltered
frequencies higher than the simulation grid resolution Nyquist limit
because those frequencies would be damped out by the simulation
(Figure 11b). The spectrum containing only the removed frequencies
was reapplied to the meshed result at render time, Figure 11h.

A well-known problem with spectral deep-water methods are
tiling artifacts. Computational and memory limitations forced our
tiles to be only 210 grid cells, yielding a 210 feature size ratio e.g.
(1km:1m). If the tile is too big (1km), the smallest wave features
are too coarse (1m), if the tile is too small (10m:1cm), you see visu-
ally apparent copies of the same tile if you look at a (1km) region.
Typically practitioners add di�erent sized hand-chosen tiles, but
avoiding artifacts on all scale shots is tedious and error-prone. In-
stead, we implemented an automated tile selection scheme. An artist
chooses the largest area that will be visible in the camera (say 1
km) and the smallest needed feature size (say 1cm). Then, several
210 sized tiles are created to cover the limits (Figure 14). To avoid
double-counting in the overlap regions high and low pass �ltering
was performed accordingly, and none of the frequencies outside
of the big tile were considered in the computation. This method
proved to be signi�cantly cheaper at the expense of not covering
certain frequencies at all but in practice gave good visual results,
see Figure 1.

8 CONCLUSION AND LIMITATIONS
In conclusion, we created the FAB method, unifying several disparate
controls. We showed how to build artistic FABs to create characters
and physical FABs to match procedural water. Before FABs, artists
in our organization were frustrated by limited and ad hoc particle-
based techniques, being forced to layer �xes on o�-the-shelf control
techniques. FABs were by far their favorite feature in our new �uid
solver, allowing them to create hundreds of water shots in Disney’s
Moana (see our video and Figure 1).

In the future, we would like to use FABs more widely. While our
method trivially works on elastoplastic MPM solves [Stomakhin
et al. 2013], it would be interesting to create a library of physical
elastoplastic procedural models. One limitation of our method is
that creating physical velocities for FABs requires care, but we stress

ACM Transactions on Graphics, Vol. 36, No. 4, Article 68. Publication date: July 2017.

68:8 • Stomakhin, A. and Selle, A.

log f y

log fx

smallest frequency &

largest detail needed
largest frequency &

smallest detail needed

Tile size needed

computable

tile

computable

tile

computable

tile

computable

tilefiltering thresholds

Fig. 14. Multi-tile deep water spectrum construction. ©Disney

the situation is immensely better since we create a framework where
physicality is more easily achieved. Additionally, while our method
matches deep water and Stokes waves, another limitation is that
a perfect match is not guaranteed once internal boundaries (like
boats) are introduced. One idea would be to adapt perfectly matched
layers to work on non-rectangular domains so that they could be
used in concert with FABs. Regardless, we expect our technique
would be a useful addition to any �uid solver.

ACKNOWLEDGMENTS
We appreciate our artistic users, speci�cally David Rand and David
Hutchins for artistic and physical FAB examples, respectively. Ralf
Habel and Patrick Kelly helped considerably with level set composit-
ing and render-time meshing. We would also like to thank Lawrence
Chai and Rajesh Sharma for initial discussions about improving the
water simulation pipeline. Rick Hankins at ILM also provided a lot
of initial insight and inspiration. Lastly, we would like to thank the
Walt Disney Animation Studios leadership.

REFERENCES
Morten Bojsen-Hansen and Chris Wojtan. 2016. Generalized non-re�ecting boundaries

for �uid re-simulation. ACM Trans. on Graph. 35, 4 (2016), 96.
R. Bridson. 2008. Fluid Simulation for Computer Graphics. Taylor & Francis. https:

//books.google.com/books?id=gFI8y87VCZ8C
M.W. Dingemans. 1997. Water Wave Propagation Over Uneven Bottoms: Non-linear

wave propagation. Number pt. 2 in Advanced series on ocean engineering. World
Scienti�c Pub. https://books.google.com/books?id=FLTfoAut5dwC

Raanan Fattal and Dani Lischinski. 2004. Target-driven Smoke Animation. ACM Trans.
Graph. 23, 3 (Aug. 2004), 441–448. DOI:https://doi.org/10.1145/1015706.1015743

Nick Foster and Dimitris Metaxas. 1997. Controlling Fluid Animation. In Proc. 1997 Conf.
on Comp. Graphics Intl. (CGI ’97). http://dl.acm.org/citation.cfm?id=792756.792862

Alain Fournier and William T. Reeves. 1986. A Simple Model of Ocean Waves. SIG-
GRAPH Comput. Graph. 20, 4 (Aug. 1986), 75–84. DOI:https://doi.org/10.1145/15886.
15894

Jeong-mo Hong and Chang-hun Kim. 2004. Controlling �uid animation with geometric
potential. Comp. Anim. and Virtual Worlds 15, 3-4 (2004), 147–157. DOI:https:
//doi.org/10.1002/cav.17

Christopher Horvath and Willi Geiger. 2009. Directable, High-resolution Simulation
of Fire on the GPU. ACM Trans. Graph. 28, 3, Article 41 (July 2009), 8 pages. DOI:
https://doi.org/10.1145/1531326.1531347

Christopher J. Horvath. 2015. Empirical Directional Wave Spectra for Computer
Graphics. In Proc. 2015 Symp. on Digital Production (DigiPro ’15). 29–39. DOI:
https://doi.org/10.1145/2791261.2791267

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. The A�ne Particle-in-cell Method. ACM Trans. Graph. 34, 4, Article 51 (July
2015), 10 pages. DOI:https://doi.org/10.1145/2766996

Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet turbulence
for �uid simulation. In ACM Trans. on Graph., Vol. 27. ACM, 50.

Antoine McNamara, Adrien Treuille, Zoran PopoviÄĞ, and Jos Stam. 2004. Fluid control
using the adjoint method. ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004 (2004),
449–456. DOI:https://doi.org/10.1145/1186562.1015744

J.H. Michell. 1893. The Highest Waves in Water. https://books.google.com/books?id=
MCgzAQAAMAAJ

Viorel Mihalef, Dimitris Metaxas, and Mark Sussman. 2004. Animation and Control of
Breaking Waves. In Proc. 2004 ACM SIGGRAPH/EG Symp. on Comp. Anim. (SCA ’04).
315–324. DOI:https://doi.org/10.1145/1028523.1028565

Ken Museth. 2013. VDB: High-resolution Sparse Volumes with Dynamic Topology.
ACM Trans. Graph. 32, 3, Article 27 (July 2013), 22 pages. DOI:https://doi.org/10.
1145/2487228.2487235

Michael B. Nielsen and Robert Bridson. 2011. Guide Shapes for High Resolution
Naturalistic Liquid Simulation. ACM Trans. Graph. 30, 4, Article 83 (July 2011),
8 pages. DOI:https://doi.org/10.1145/2010324.1964978

Michael B. Nielsen and Robert Bridson. 2016. Spatially Adaptive FLIP Fluid Simulations
in Bifrost. In ACM SIGGRAPH 2016 Talks (SIGGRAPH ’16). ACM, New York, NY, USA,
Article 41, 2 pages. DOI:https://doi.org/10.1145/2897839.2927399

Michael O’Brien. 2013. Running Rivers. XRDS 19, 4 (June 2013), 30–33. DOI:https:
//doi.org/10.1145/2460436.2460447

N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon, and R.
Fedkiw. 2004. Directable Photorealistic Liquids. In Proc. 2004 ACMSIGGRAPH/EG
Symp. on Comp. Anim. 193–202. DOI:https://doi.org/10.1145/1028523.1028549

William T Reeves. 1983. Particle systems–a technique for modeling a class of fuzzy
objects. ACM Trans. on Graphics 2, 2 (1983), 91–108.

I. Sachs, C. Twigg, L. Uren, D. Pearson, and N. Rasmussen. 2010. Waterbending: Water
e�ects on “The Last Airbender”. In ACM SIGGRAPH 2010 Talks.

Andrew Selle, Michael Lentine, and Ronald Fedkiw. 2008. A mass spring model for hair
simulation. ACM Trans. on Graph. 27, 3 (2008), 64.

Lin Shi and Yizhou Yu. 2005a. Controllable Smoke Animation with Guiding Objects.
ACM Trans. Graph. 24, 1 (Jan. 2005), 140–164. DOI:https://doi.org/10.1145/1037957.
1037965

Lin Shi and Yizhou Yu. 2005b. Taming Liquids for Rapidly Changing Targets. In Proc.
2005 ACMSIGGRAPH/Eurographics Symp. on Comp. Anim. ACM, 229–236. DOI:
https://doi.org/10.1145/1073368.1073401

Andreas Söderström, Matts Karlsson, and Ken Museth. 2010. A PML-based nonre�ective
boundary for free surface �uid animation. ACM Trans. on Graph. 29, 5 (2010), 136.

G.G. Stokes. 1847. On the theory of oscillatory waves. Trans. of the Cambridge Philo-
sophical Society (1847).

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.
2013. A Material Point Method for Snow Simulation. ACM Trans. Graph. 32, 4,
Article 102 (July 2013), 10 pages. DOI:https://doi.org/10.1145/2461912.2461948

Jerry Tessendorf. 1999. Simulating ocean water.
N. Thürey, R. Keiser, M. Pauly, and U. Rüde. 2006. Detail-preserving Fluid Control.

In Proc. of the 2006 ACM SIGGRAPH/Eurographics Symp. on Comp. Anim. 7–12.
http://dl.acm.org/citation.cfm?id=1218064.1218066

Nils Thürey, Ulrich Rüde, and Marc Stamminger. 2006. Animation of open water
phenomena with coupled shallow water and free surface simulations. In Proc. 2006
ACM SIGGRAPH/EG symp. on Comp. Anim. Eurographics Association, 157–164.

Adrien Treuille, Antoine McNamara, Zoran PopoviÄĞ, and Jos Stam. 2003. Keyframe
control of smoke simulations. ACM Trans. on Graphics 22 (7 2003), 716–723. DOI:
https://doi.org/10.1145/882262.882337

Stephan Trojansky. 2008. Raging Waters: The Rivergod of Narnia. In ACM SIGGRAPH
2008 Talks (SIGGRAPH ’08). Article 74, 1 pages. DOI:https://doi.org/10.1145/1401032.
1401127

Mark Wiebe and Ben Houston. 2004. The Tar Monster: Creating a Character with
Fluid Simulation. In ACM SIGGRAPH 2004 Sketches (SIGGRAPH ’04). 64–. DOI:
https://doi.org/10.1145/1186223.1186303

I.R. Young. 1999. Wind Generated Ocean Waves. Elsevier Science. https://books.google.
com/books?id=ph7GKZZGjyYC

Jihun Yu and Greg Turk. 2010. Reconstructing surfaces of particle-based �uids us-
ing anisotropic kernels. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA ’10). Eurographics Association, Aire-la-
Ville, Switzerland, Switzerland, 217–225. http://dl.acm.org/citation.cfm?id=1921427.
1921459

Zhi Yuan, Fan Chen, and Ye Zhao. 2011. Pattern-guided Smoke Animation with La-
grangian Coherent Structure. ACM Trans. Graph. 30, 6, Article 136 (Dec. 2011),
8 pages. DOI:https://doi.org/10.1145/2070781.2024170

Received January 2017; accepted April 2017

ACM Transactions on Graphics, Vol. 36, No. 4, Article 68. Publication date: July 2017.

https://books.google.com/books?id=gFI8y87VCZ8C
https://books.google.com/books?id=gFI8y87VCZ8C
https://books.google.com/books?id=FLTfoAut5dwC
https://doi.org/10.1145/1015706.1015743
http://dl.acm.org/citation.cfm?id=792756.792862
https://doi.org/10.1145/15886.15894
https://doi.org/10.1145/15886.15894
https://doi.org/10.1002/cav.17
https://doi.org/10.1002/cav.17
https://doi.org/10.1145/1531326.1531347
https://doi.org/10.1145/2791261.2791267
https://doi.org/10.1145/2766996
https://doi.org/10.1145/1186562.1015744
https://books.google.com/books?id=MCgzAQAAMAAJ
https://books.google.com/books?id=MCgzAQAAMAAJ
https://doi.org/10.1145/1028523.1028565
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1145/2010324.1964978
https://doi.org/10.1145/2897839.2927399
https://doi.org/10.1145/2460436.2460447
https://doi.org/10.1145/2460436.2460447
https://doi.org/10.1145/1028523.1028549
https://doi.org/10.1145/1037957.1037965
https://doi.org/10.1145/1037957.1037965
https://doi.org/10.1145/1073368.1073401
https://doi.org/10.1145/2461912.2461948
http://dl.acm.org/citation.cfm?id=1218064.1218066
https://doi.org/10.1145/882262.882337
https://doi.org/10.1145/1401032.1401127
https://doi.org/10.1145/1401032.1401127
https://doi.org/10.1145/1186223.1186303
https://books.google.com/books?id=ph7GKZZGjyYC
https://books.google.com/books?id=ph7GKZZGjyYC
http://dl.acm.org/citation.cfm?id=1921427.1921459
http://dl.acm.org/citation.cfm?id=1921427.1921459
https://doi.org/10.1145/2070781.2024170

	Abstract
	1 Introduction
	2 Previous Work
	3 Motivation
	4 Our method
	4.1 Integration within solver
	4.2 Discussion
	4.3 Efficient reseeding
	4.4 Creating a material velocity field
	4.5 Artistic applications

	5 Physical simulation with FAB
	5.1 Swells and Stokes waves
	5.2 Deep water waves

	6 Examples
	6.1 Simulating a swell
	6.2 Boat wake on an ocean surface
	6.3 Breaking wave

	7 Implementation Notes
	7.1 Simulator modification
	7.2 Blending and meshing
	7.3 Deep water spectrum

	8 Conclusion and limitations
	Acknowledgments
	References

