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Figure 1: Our method takes a geometric internal skeleton (left) and a source surface mesh (not pictured) as input. Based on a hexahedral
lattice (center) it then simulates a deformed surface (right) obeying self-collision and volumetric elasticity. The example shown here has
106,567 cells and simulates at 5.5 seconds per frame. c©Disney Enterprises, Inc.

Abstract

We present a new algorithm for near-interactive simulation of skele-
ton driven, high resolution elasticity models. Our methodology is
used for soft tissue deformation in character animation. The al-
gorithm is based on a novel discretization of corotational elastic-
ity over a hexahedral lattice. Within this framework we enforce
positive definiteness of the stiffness matrix to allow efficient qua-
sistatics and dynamics. In addition, we present a multigrid method
that converges with very high efficiency. Our design targets perfor-
mance through parallelism using a fully vectorized and branch-free
SVD algorithm as well as a stable one-point quadrature scheme.
Since body collisions, self collisions and soft-constraints are nec-
essary for real-world examples, we present a simple framework for
enforcing them. The whole approach is demonstrated in an end-to-
end production-level character skinning system.
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1 Introduction
Creating appealing characters is essential for feature animation.
One challenging aspect is the production of life-like deformations
for soft tissues comprising both humans and animals. In order to
provide the necessary control and performance for an animator,
such deformations are typically computed using a skinning tech-
nique and/or an example based interpolation method. Meanwhile,
physical simulation of flesh-like material is usually avoided or rel-
egated to an offline process due to its high computational cost.
However, simulations create a range of very desirable effects, like
squash-and-stretch and contact deformations. The latter is espe-
cially important as it can guarantee pinch-free geometry, which is
important for subsequent simulations like cloth and hair.

Although the benefits of solving the equations of the underlying
physical laws for character deformation are clear, computational
methods are traditionally far too slow to accommodate the rapid
interaction demanded by animators. Many simplified approaches
to physical simulation can satisfy interactivity demands, but any
such approach must provide all of the following functionality to be
useful in production: (1) robustness to large deformation, (2) sup-
port for high-resolution geometric detail, (3) fast and accurate col-
lision response (both self and external objects). Ideally, for rigging,
it should also provide path independent deformations determined
completely by a kinematic skeleton. However, this is not possible
since contact deformations in general depend on the path taken to
the colliding state.

Whereas previous works have addressed many of these concerns
individually, e.g., robustness to large deformation in [Irving et al.
2004], high resolution detail [Zhu et al. 2010], and quasistatic simu-
lation [Teran et al. 2005], we present a novel algorithmic framework
for the simulation of hyperelastic soft tissues that targets all aspects
discussed above. Our approach is robust to large deformation (even
inverted configurations) and extremely stable by virtue of careful
treatment of linearization. We present a new multigrid approach
to efficiently support hundreds of thousands of degrees of freedom
(rather than the few thousands typical of existing techniques) in a
production environment. Furthermore, these performance and ro-
bustness improvements are guaranteed in the presence of both colli-
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sion and quasistatic/implicit time stepping techniques. We demon-
strate the impact of these advances in a complete production system
for physics-based skinning of skeletally driven characters.

2 Related work

Skeleton driven skin deformation was first introduced by
[Magnenat-Thalmann et al. 1988]. Since then such techniques have
been used extensively, especially the “linear blend skinning” tech-
nique (aka. “skeleton subspace deformation” (SSD) or “envelop-
ing”). However, the limitations of such techniques are well-known
and have been the topic of numerous papers [Wang and Phillips
2002; Merry et al. 2006; Kavan et al. 2008]. Despite improvements,
skinning remains, for the most part purely kinematic. It has proven
very difficult to get more accurate, physically based deformations
(e.g., from self-collisions and contact with other objects). Instead,
such phenomena are typically created through a variety of example
based approaches [Lewis et al. 2000; Sloan et al. 2001]. Although
example based methods are computationally cheap, they often re-
quire extreme amounts of user input, especially for contact and col-
lision. Recently, authors have also considered automatic means of
fitting skeletons and binding their movement to deformation as in
[Baran and Popović 2007].

Simulation recently enabled significant advances to character re-
alism in [Irving et al. 2008] and [Clutterbuck and Jacobs 2010],
albeit with the luxury of extreme computation time. Nevertheless
these approaches demonstrated the promise of simulation. Many
techniques reduce the accuracy of the elasticity model to help
improve performance and interactivity. [Terzopoulos and Waters
1990; Chadwick et al. 1989] first demonstrated the effectiveness of
comparatively simple mass/spring based approaches. [Sueda et al.
2008] add interesting anatomic detail using the tendons and bones
in the hand, but use simple surface-based skin. [Shi et al. 2008] use
simplified surface-based spring forces to provide dynamics given an
example skeleton and deformed poses. [Kry et al. 2002] use prin-
ciple component analysis of off-line elasticity simulation to pro-
vide interactive physically based SSD. [Capell et al. 2005; Capell
et al. 2002; Galopo et al. 2007] used a skeleton based local rota-
tional model of simple linear elasticity. [Müller et al. 2005] in-
troduced shape matching, a technique that uses quadratic modal
elements defined per lattice cell, allowing realtime albeit less ac-
curate deformations. [Rivers and James 2007] extended the accu-
racy of this method while maintaining high performance with a fast
SVD. Warped stiffness approaches [Müller et al. 2002; Müller and
Gross 2004; Müller et al. 2004] are a more general example of the
techniques developed by Cappel et al. and use an inexact force dif-
ferential to yield easily solvable symmetric positive definite (SPD)
linearizations. However, [Chao et al. 2010] recently demonstrated
the importance of a more accurate approximation to rotational force
differentials lacking in warped stiffness approaches. We illustrate
this important robustness limitation of the warped stiffness approxi-
mation in figure 2 (see also section 5). The instability of the method
hinders its use in skinning applications. Unfortunately, the more ac-
curate linearizations yield indefinite systems and thus require more
expensive linear algebra techniques (e.g., GMRES). In the present
work, we demonstrate a solution procedure that rivals the efficiency
of warped stiffness, but without the robustness difficulties.

Typically elastic simulation requires the solution of large sparse
systems. Conjugate gradients is a popular method for solving such
systems by virtue of simplicity and low-memory overhead; how-
ever, it is plagued by slow convergence (especially with high resolu-
tion models). Multigrid techniques potentially avoid these conver-
gence issues, but can be costly to derive for problems over irregular
domains. [Zhu et al. 2010] developed a multigrid approach that
achieves nearly optimal convergence properties for incompress-

ible materials on irregular domains. However, their technique for
corotational elasticity uses a pseudo-Newton iteration that does not
guarantee convergence on the large deformations typical in skele-
ton driven animation. [Dick et al. 2011; Georgii and Westermann
2006; Wu and Tendick 2004] also examine multigrid methods for
rapidly solving the equations of corotational elasticity. However
these techniques are based on the warped stiffness approximation
to corotational force differentials and demonstrate similar conver-
gence issues as Zhu et al. Multigrid has also been shown to pro-
vide excellent parallel performance (e.g., on the GPU in [Dick et al.
2011] and on the CPU in [Zhu et al. 2010]). [Otaduy et al. 2007]
consider FAS multigrid methods for solving implicit dynamics on
unstructured grids. Our multigrid approach is the first to robustly
provide near-interactive performance for non-linear elasticity mod-
els with hundreds of thousands of degrees of freedom.

3 Elasticity and discretization

The demand for high-resolution simulation with optimal perfor-
mance and robustness motivated the development of our novel co-
rotational elasticity discretization. Following [Chao et al. 2010], we
use an accurate treatment of force derivatives to yield a more robust
solver than the simplified warped-stiffness techniques. We show
that these careful linearizations can be done both cheaply and sim-
ply and are essential for our desired robustness and efficiency. We
perform the discretization over a uniform hexahedral lattice (rather
than an unstructured tetrahedral one) to facilitate performance on
modern hardware. Although standard methods for hexahedra re-
quire 8 point Gauss quadrature per cell for stability, we develop a
much more efficient one-point quadrature discretization (section 4).
In section 3.2 we begin with a quasistatic method, but we extend our
technique to dynamics in section 6.

3.1 Fundamentals

We represent the deformation of a 3D elastic body by a function
φ : Ω → R3, which maps a material point X to a deformed
world-space point x so x = φ(X). Subsequently, we use x and φ

Figure 2: Inexact methods of computing force differentials lead to
instabilities, even with moderate Poisson’s ratio (0.3), unlike our
method. In this example, instabilities occur at 2.4× stretch, which
is common near joints in skinning applications.



interchangeably, i.e. we identify x(X) ≡ φ(X). For hyperelastic
materials in general, the response can be computed based on the
deformation energy:

E =

∫
Ω

Ψ(X,F(X))dX (1)

For simplicity we will here consider the energy density Ψ as a func-
tion of the deformation gradient Fij = ∂φi/∂Xj . Specifically for
corotational elasticity we have

Ψ = µ‖F−R‖2F +
λ

2
tr2(RTF− I) (2)

where µ, λ are the Lamé coefficients, and R is the rotation from the
polar decomposition F = RS.

We discretize our model domain Ω into cubic elements Ωe of
step size h so Ω = ∪eΩe. The degrees of freedom are world
space samples of xi = φ(Xi). The discrete version of equa-
tion (1) then becomes a sum of energies from each element
Ee. Using just a single quadrature point for the voxel center
pc gives Ee ≈ h3Ψ(Fe) where Fe ≈ F(pc) is computed
with central differences about the cell center from averaged faces.
This approximation can be written

F eij =
∑
k

Gejkx
(i)
k (3)

where x(i)
k is the i-th component of the

three-dimensional vector xk (see right)
and we have a discrete gradient

G
e
=

1

4h

 −1 1 −1 1 −1 1 −1 1

−1 −1 1 1 −1 −1 1 1

−1 −1 −1 −1 1 1 1 1

 .

Thus, we have a means to compute the total energy in terms only
of the nodal world positions of our hexahedral lattice.

3.2 Force and equilibrium

A discrete force per node can in general be written as

f i = − ∂E
∂xi

=
∑
e

(
−∂Ee
∂xi

)
=
∑
e

fei . (4)

Using equation (3) and the fact that Ψ is a function of the defor-
mation gradient alone, a concise expression for each of the compo-
nents of fei = (f

(1)
i , f

(2)
i , f

(3)
i ) (the force contribution to node i

from element e) is:

f
(j)
i =− ∂Ee

∂x
(j)
i

= −Ve
∂Ψ(Fe)

∂x
(j)
i

= −Ve
∑
k,l

∂Ψ

∂Fkl

∣∣∣∣
Fe

∂F ekl

∂x
(j)
i

=−Ve
∑
k,l

[P(Fe)]klG
e
liδjk = −Ve

∑
l

[P(Fe)]jlG
e
li

=−Ve[P(Fe)Ge]ji. (5)

where P(F) :=∂Ψ/∂F is the 1st Piola-Kirchhoff stress tensor. For
corotational elasticity, equation (2), we specifically get:

P = R [2µ(S− I) + λtr(S− I)] (6)

We note that this expression does not depend on ∂R/∂F due
to cancellation, as described in the attached technical document.
Combining this with equation 5 we have a matrix that maps the
nodal positions of a cell to its force contribution

Je =
(
fe1 fe2 · · · fe8

)
= −VeP(Fe)Ge. (7)

At each nodal position x := (x1, . . . ,xN ) we compute the forces
f(x) := (f1(x1), . . . ,fN (xN )) and we might additionally have
external forces g. For quasistatics we solve the resulting force
balance equation f + g = 0 using Newton-Raphson where the kth
iterate requires the solution of the linearized system:

K(x(k))δx(k) = g + f(x(k)). (8)

Here K(x(k)) := − ∂f
∂x

∣∣∣
x(k)

and δx(k) := x(k+1)−x(k).

3.3 Differentials of force and stress

Equation (8) requires solving K at every iteration. However, form-
ing the matrix explicitly would incur significant performance losses
from the 243 non-zero entries needed per node. Instead, we define
a procedure that directly determines the product Kδx (where δx is
a displacement), allowing the use of a Krylov solver. The product
Kδx=−δf is the force differential induced by the displacements.
Applying differentials on equations (4) and (7) we can write the
differential of each nodal force as δf i=

∑
e δf

e
i , where:(

δfe1 δfe2 · · · δfe8
)

= −h3δ [P(Fe)] Ge. (9)

Taking differentials of RTR=I we get (RTδR)T+RTδR=0, thus
the matrix δRTR is skew symmetric. Consequently tr(δRTF) =
tr(δRTRS) = (δRTR) : S = 0 as a contraction of a symmetric
and a skew symmetric matrix is zero. Using this result, we take
differentials on equation (6) to obtain

δP= 2µ(δF− δR) + λ
{

tr(δRTF) + tr(RT δF)
}

R

+λtr(RTF− I)δR

= 2µδF + λtr(RT δF)R + {λtr(S− I)− 2µ} δR. (10)

The differential δF of the (discrete, cell-centered) deformation gra-
dient is computed from equation (3) according to the formula:

δF eij =
∑
k

Gejkδx
(i)
k . (11)

The differential of rotation R is given by

δR = R
[
E :
(

(tr(S)I− S)−1
(
ET : (RT δF)

))]
(12)

where E is the alternating third order tensor which maps a vector
to a cross product matrix. Equation (12) is a compact expression
of the result presented in [Twigg and Kačić-Alesić 2010], see also
the attached technical document for a detailed proof. In summary,
for every cell Ωe, we compute the cell-centered deformation gra-
dient Fe using equation (3) and compute its polar decomposition.
Using equations (10), (11) and (12) we compute δP corresponding
to the displacements δx. Finally, using equation (9) we compute
the contribution of Ωe to the force differential, and accumulate the
computed values onto δf .

4 Stabilization

In section 3 we outlined a discretization using a single quadrature
point per cell. This choice promises better performance since it re-
quires only one SVD/polar decomposition per cell (rather than 8
with Gauss quadrature). Unfortunately, this leads to catastrophic
defects if used without modification. Our method stabilizes the one
point quadrature approach and thus improves performance signifi-
cantly by requiring just one SVD/polar decomposition per cell.



Consider that a cell has 8 points (24 DOFs), but the one-point
quadrature based elemental energy only depends on the cell-
centered deformation gradient (9 DOFs), leading to a large sub-
space of deformation modes that have no effect on the discrete
energy. If we were fortunate, this “nullspace” might only appear
element-by-element and in the union of all elements, these modes
would be penalized. Unfortunately, in our case, there exist non-
physical global modes that have no effect on discrete energy. For
example, consider a red-black ordering of the grid nodes, and as-
sign one constant displacement to red nodes and another to all black
ones. This is not seen by the discrete energy and is visible as par-
asitic “hourglassing” artifacts in force equilibrium (as in figure 3).
These oscillatory nullspace modes are more than visual artifacts,
they compromise the ellipticity of the discrete equations in multi-
grid methods. This is why standard discretizations use higher-order
quadrature, gaining stability at higher cost.

We remedy this instability by proposing a new integration rule that
is stable yet computationally cheap (requires only one polar decom-
position per cell). As an initial observation, we have experimen-
tally verified that the term µ‖F − R‖2F in equation (2) is the one
which primarily determines stability; we observed that if a stable
technique (e.g. 8-point Gauss quadrature) is used to integrate this
term, the entire scheme will remain stable, even if the naive 1-point
quadrature is used for the term λ

2
tr2(RTF − I). Thus, we will

initially present our approach in the context of the simpler energy
density Ψ = µ‖F −R‖2F , and address the 2D case first (i.e., on a
square lattice).

The use of staggered grids to avoid instability from non-physical
modes when using central differencing can be seen in many Eule-
rian fluid dynamics methods. [Harlow and Welch 1965] introduced
the staggered MAC grid for velocities and pressure, and [Gerritsma
1996; Goktekin et al. 2004] extended this to viscoelastic fluids by
staggering the second order stress or strain tensors. Similarly, we
introduce four additional quadrature points pq, q ∈ {A,B,C,D},
located on edge centers of the quadrilateral lattice (see right). We
write Ψ as

Ψ = µ
∑
i,j

(Fij −Rij)2. (13)

Our approach will essentially follow a dif-
ferent quadrature rule for every term (Fij −
Rij)

2 in this expression. In particular, instead
of using the single quadrature point pe at the
cell center, we will use those locations within
the cell (possibly more than one) where Fij
is “naturally” defined, as a central difference
of just two degrees of freedom. In this way,
we avoid the averaging and risk of cancellation associated with ex-
pressing all derivatives exclusively at the cell center.

We observe that the x-derivatives F11 and F21 are naturally defined
at the centers pA,pB of x-oriented edges, while the y-derivatives
F12 and F22 are naturally located at points pC and pD . We also
evaluate the cell-centered deformation gradient Fe once more, fol-

Figure 3: A 2D elastic patch is stretched by pinning the four cor-
ners to target locations. Left: The unmodified one-point quadrature
method is riddled by hourglassing instabilities. Right: Our method.

lowing exactly equation (3) as before. We compute matrix Re from
the polar decomposition of Fe, and use the information from this
matrix wherever Rij is needed in equation (13). Finally, our pro-
posed quadrature method takes the form:

Ee =
µh2

2

2∑
i=1

 ∑
q∈{A,B}

(F qi1−R
e
i1)2 +

∑
q∈{C,D}

(F qi2−R
e
i2)2

 .
(14)

We have that F ei1 = 1
2

∑
q∈{A,B} F

q
i1 and F ei2 = 1

2

∑
q∈{C,D} F

q
i2

since the entries of Fe were defined as averaged central differences.
Using these identities, equation (14) becomes Ee = E1 +E2, with

E1 =
µh2

2

2∑
i=1

(
(FAi1)2+(FBi1 )2+(FCi2 )2+(FDi2 )2

)
, and (15)

E2 = µh2
[
−2tr

(
ReTFe

)
+ ‖I‖2F

]
(16)

The energy discretization suggested by equations (15) and (16) is
stable, as seen by our results and the convergent multigrid schemes
we have constructed on its basis. In order to better explain the me-
chanics of this approach, we manipulate the µ-component of the
energy as follows:

Ψ = µ‖F−R‖2F = µ‖F‖2F − 2µtr
(
RTF

)
+ µ‖I‖2F .

Equation (15) suggests a quadrature rule for the term µ‖F‖2F . The
integral 1

2

∫
‖F‖2F is the weak form of the component-wise Laplace

operator; thus equation (15) generates an energy discretization for
the Laplace operator 2µ∆. Equation (16) is nothing but a one-point
quadrature, but on the term−2µtr

(
RTF

)
+µ‖I‖2F . In fact, at this

point we can re-introduce the omitted λ-term of the energy, and
write Ψ as:

Ψ = µ‖F‖2F︸ ︷︷ ︸
Ψ∆

−2µtr
(
RTF

)
+ µ‖I‖2F +

λ

2
tr2(RTF− I)︸ ︷︷ ︸

Ψaux

(17)

We implement this discretization, by separating energy, forces, and
force differentials into two components: (a) a term stemming from
the Laplace energy density Ψ∆, and (b) an auxiliary term origi-
nating from Ψaux, which is integrated with the simple one-point
quadrature as in section 3. Note that the forces arising from the
Laplace term are purely linear, and the stiffness matrix resulting
from the same term is constant (and equal to a Laplace matrix),
leading to a minimal implementation overhead, over the standard
cost of one-point quadrature for the auxiliary term.

5 Indefiniteness correction

Symmetry of the stiffness matrix, K, allows the use of certain
Krylov methods, but positive definiteness is required for conjugate
gradients. While K will be positive definite close to equilibrium
(it is the energy Hessian), in practice Newton-Raphson may gen-
erate intermediate indefinite states. Like [Teran et al. 2005], we
will modify K to guarantee definiteness while retaining the same
nonlinear solution (though maybe via different iterates).

Similar to [Teran et al. 2005] we will conservatively enforce the
definiteness of K by projecting each elemental stiffness matrix to
its positive semi-definite counterpart, i.e. a matrix with the same
eigenvectors, but with negative eigenvalues clamped to zero. Nat-
urally, we want to avoid an explicit eigenanalysis of the 24 × 24
elemental stiffness Ke, and even avoid forming it at altogether. We



describe a procedure to perform this semi-definite projection in an
inexpensive, matrix-free fashion. We will initially describe the defi-
niteness projection for the simple one-point quadrature rule, defined
in section 3. This will be a stepping stone in designing a definite-
ness fix for our stabilized quadrature rule, described in section 4.
The elemental stiffness matrix is positive semi-definite if and only
if 0 ≤ δxTKeδx = −δxT δf , where δx, δf are the stacked nodal
position and force differentials for Ωe. Taking differentials on both
sides of equation (5) we get:

δf
(j)
i = −Ve

∑
k

δPjkG
e
ki = −Ve

∑
k,l,m

TjklmδF
e
lmG

e
ki

where T = [Tijkl] is the fourth order tensor defined as the stress
derivative T := ∂P/∂F, or Tijkl = ∂Pij/∂Fkl. We then write:

−δxT δf = −
∑
i,j

δf
(j)
i δx

(j)
i = Ve

∑
j,k,l,m

TjklmδF
e
lm

∑
i

Gekiδx
(j)
i

(Eqn.3)
= Ve

∑
j,k,l,m

TjklmδF
e
lmδF

e
jk = Ve (δFe : T : δFe) .

Thus, Ke will be positive semi-definite, if and only if the fourth
order tensor ∂P/∂F is positive definite as well (in the sense that
δF : T : δF ≥ 0, for all δF). At this point, consider a different
4th order tensor T̂ defined by δP = T : δF = R[T̂ : (RT δF)].
Intuitively, if we define the unrotated differentials δP̂ = RT δP,
and δF̂ = RT δF, then T̂ is the tensor that maps δP̂ = T̂ : δF̂.
Tensors T and T̂ are a similarity transform of one another; con-
sequently they share the same eigenvalues, and performing the in-
definiteness fix on one will guarantee the definiteness of the other.
Using this definition and equations (10) and (12), δP̂ reduces to:

δP̂ = T̂ : δF̂ = 2µδF̂+λtr(δF̂)I+{λtr(S−I)−2µ} S :δF̂ (18)

where S = E : {tr(S)I− S}−1 : ET . Consider the decomposition
of δF̂ = δF̂sym +δF̂skew into symmetric δF̂sym = (δF̂+δF̂T )/2

and skew symmetric δF̂skew = (δF̂−δF̂T )/2 parts; also consider
a similar decomposition of δP̂ = δP̂sym +δP̂skew. By collecting
symmetric and skew symmetric terms from equation (18) we have:

δP̂sym = 2µδF̂sym+λtr(δF̂sym)I = Tsym : δF̂sym (19)

δP̂skew =2µδF̂skew+{λtr(S-I)-2µ} S :δF̂skew =Tskew :δF̂skew

In essence, T̂ = Tsym + Tskew has a fully decoupled action on
the two subspaces of symmetric, and skew symmetric matrices.
Since the symmetric and skew subspaces are orthogonal, T̂ will
be semi-definite, if and only if its skew and symmetric parts are
semi-definite too. The tensor Tsym = 2µIsym + λI⊗ I (Isym is the
operator that projects a matrix onto its symmetric part) is always
positive semi-definite; thus no modification is necessary. If Iskew is
the operator that projects a matrix onto its skew symmetric part, we
can verify that 2Iskew = E : I : ET . Thus, Tskew is written as:

Tskew = µE : I : ET + {λtr(S−I)−2µ}
[
E :{tr(S)I−S}−1 :ET

]
= E :L :ET , where L = µI + {λtr(S−I)−2µ} {tr(S)I−S}−1

E is also an orthogonal (although not orthonormal) tensor, thus the
definiteness of Tskew is equivalent with the definiteness of the 3× 3
symmetric matrix L, which can be easily projected to its positive
definite part. In fact, if the method we used to compute the polar
decomposition were to first compute the entire SVD F = UΣVT

of the deformation gradient, then we have L = VLDVT where

LD = µI + {λtr(Σ−I)−2µ} {tr(Σ)I−Σ}−1

is a diagonal matrix, whose diagonal elements simply need to be
clamped to zero, to ensure definiteness for L, for Tskew and ulti-
mately for the entire element stiffness matrix. In practical imple-
mentation, the matrix L, projected to its semi-definite component,
is precomputed and stored at the same time when the Polar Decom-
position of each element is performed. Then, the definitions of this
section are followed to successively construct δP̂sym and δP̂skew,
using equations (19), and ultimately δP = RδP̂.

So far, we have discussed how to correct the indefiniteness of the
stiffness matrix arising from the (unstable) one-point quadrature
technique. In light of the energy decomposition reflected in equa-
tion (17) the difference in the discrete energy between the stable and
unstable approaches, is the discrete quadrature that will be followed
to integrate the part Ψ∆. Our stable technique employs equation
(15) for this task, while the original unstable technique uses one-
point quadrature. In two spatial dimensions, if we denote by ES∆
and EU∆ the discrete integral associated with the Laplace term in
the stable, and unstable variants respectively, we then have:

EU∆ = µh2
2∑
i=1

(
(F ei1)2 + (F ei2)2)

= µh2
2∑
i=1

(
(
FAi1 + FBi1

2
)2 + (

FCi2 + FDi2
2

)2

)

EU∆ − ES∆
(15)
= µh2

2∑
i=1

(
(
FAi1 − FBi1

2
)2 + (

FCi2 − FDi2
2

)2

)
≥ 0

Thus, we can interpret our stable discretization as adding the un-
conditionally convex term EU∆ − ES∆ to the unstable energy dis-
cretization of the single-point approach. The indefiniteness fix de-
scribed in the context of the unstable method can also be interpreted
as augmenting the real stiffness matrix with a supplemental term
K ← K + Ksupp that guarantees the definiteness of the resulting
matrix. The last equation indicates that if the same “definiteness-
boosting” matrix Ksupp is added to the stable discretization, def-
initeness will be guaranteed. Algorithm 1 summarizes the entire
procedure that implements the “auxiliary” stress differential corre-
sponding to the Ψaux energy component. The differential of the
additional force due to the Laplace term Ψ∆ are computed as de-
scribed in section 4.

Algorithm 1 Computation of the stress differential corresponding
to the auxiliary energy term Ψaux. Fixed to guarantee definiteness.

1: function COMPUTE L(Σ,V, µ, λ,L)
2: LD ← {λtr(Σ−I)−2µ} {tr(Σ)I−Σ}−1

3: Clamp diagonal elements of LD to a minimum value
4: of (−µ) . Term Ψ∆ will boost this eigenvalue by µ
5: L← VLDVT

6: end function
7: function DPAUXDEFINITEFIX(δF,R,L) . Returns δPaux
8: δF̂sym ← SYMMETRICPART(RT δF)

9: δF̂skew ← SKEWSYMMETRICPART(RT δF)

10: δP̂sym ← λtr(δF̂sym)I

11: δP̂skew ← E :
{

L(ET :δF̂skew)
}

12: δPaux ← R
(
δP̂sym + δP̂skew

)
13: return δPaux
14: end function

Impact on convergence Although the formulations in this sec-
tion provide the benefit of a symmetric and definite linear system in



every Newton iteration, we should be conscious of the fact that the
force differentials thus produced are not identical to the exact ex-
pressions from equations (9) and (10) (also described in [Chao et al.
2010]). Since our decision of proper force differentiation was mo-
tivated by the lesser accuracy of the warped stiffness procedure, or
the approach of [Zhu et al. 2010], we would like to assess the mag-
nitude of inaccuracy that our definiteness correction incurs. Our
method, as well as the aforementioned approximations effectively
amount to a Modified Newton procedure for the force equilibrium
equation. Notably, all methods reach the same equilibrium solution
if converged; they simply follow different search paths towards that
solution. From the theory of modified Newton methods, the conver-
gence properties of the modified procedure depend on the spectral
radiusQ = ρ(I− Ĵ−1J), where J is the proper force Jacobian, and
Ĵ is the approximation used in the modified method. If Q < 1 the
modified procedure is convergent (in fact, when Q � 1, quadratic
convergence is practically retained); however when Q > 1 there is
no guarantee of convergence, and certain error modes exist that will
be amplified by the modified iteration.

In our work, Ĵ is the result of the indefiniteness correction previ-
ously described. For warped stiffness Ĵ results from the approx-
imation of the stress differential of equation (10) by the simpler
expression δP = R

{
µ
[
(RT δF) + (RT δF)T

]
+ λtr(RT δF)

}
.

The formulation of [Zhu et al. 2010] implies a similar approxima-
tion, namely δP = R

{
2µ(RT δF) + λtr(RT δF)

}
. The spectral

radius Q corresponding to all three approaches remains relatively
close to zero (< 0.05) for deformations that are small and smooth.
However, our method remains safely convergent, significantly more
so than the other two alternatives, even with larger, non-smooth de-
formations. For example, in the scenario of figure 2, at the moment
when warped stiffness develops an instability (2.4× extension) we
have Q = 4.87 for warped stiffness, Q = 0.829 for the approxi-
mation of [Zhu et al. 2010] and Q = 0.0717 for our approach.

6 Dynamics

Our method extends trivially to dynamic simulations that include
inertial effects. However, it is important to note that the indefinite-
ness encountered in quasistatic time stepping also arises in implicit
time stepping for dynamics. Fortunately, the definiteness fix out-
lined above can be used in this setting as well. In this case, we
typically desire a fixed, large time step of ∆t ≈ 1

30
. Using back-

ward Euler time stepping and Newton-Raphson linearization, the
following linear update equation must be solved for the increment
δx in the kth iteration

KBE(xn+1
k )δx = ∆tM

[
vn + ∆t(xn − xn+1

k )
]

+ ∆t2f(xn+1
k )

Here KBE = M+∆t2K(xn+1
k ), and M is the mass matrix. Indef-

initeness of K(xn+1
k ) can thus be seen to potentially cause indef-

initeness of KBE(xn+1
k ). One could attempt to manipulate nodal

masses or material properties to preserve definiteness, but this al-
ters the behavior of the simulation in arbitrary ways. Although
decreasing the timestep could also fix the indefiniteness, the time
step cannot be decreased arbitrarily when interactivity is desired.
Furthermore, it is important to note that the nodal mass is pro-
portionate to the volume associated with each node. Therefore, as
we increase the discrete spatial resolution of our domain, the nodal
mass decreases thereby increasing the likelihood of encountering an
indefinite backward Euler system matrix as it would behave more
and more like the indefinite K(xn+1

k ). See Figure 4 for a numer-
ical experiment that demonstrates this behavior. Therefore, when
both high performance and high resolution are desired, indefinite-
ness in the backward Euler system matrix quite likely. Fortunately,

the definiteness fix in section 5 for K(xn+1
k ) guarantees definite-

ness of the backward Euler system matrix.

Figure 4: Plot of ratios of minimum to maximum eigenvalues of the
backward Euler matrix of a dynamic elastic bar simulation without
our definiteness fix applied. Note that the minimum eigenvalues are
negative in the 16x24x84 resolution example.

7 Constraints and collisions

As previously discussed, the ability to handle elaborate collision is
an essential benefit of simulation in production. We use point con-
straints to enforce both soft constraints, such as bone attachments,
and to handle object and self collisions. Specifically, we embed
proxy points (xp) in the simulation lattices and distribute their as-
sociated forces trilinearly to the vertices of the hexahedral cells that
contain them. [Sifakis et al. 2007] show the effectiveness of this
basic approach.

Collision detection The collision response is determined by a
number of collision proxies approximately covering the embedded
collision surface. We utilize a penalty based response dependent on
the penetration depth and unit outward normal at each proxy point.
For rigid objects, we simply query a level set representation of the
object at each proxy point. However, for self-collision, the rapidly
changing shape of the elastic objects precludes accurate reconstruc-
tion of a signed distance function at each time step.

Self-collision penetration depth evaluation For each proxy col-
lision point, we first determine which deformed hexahedra contain
it in the current configuration. This is done rapidly by querying an
axis aligned bounding box hierarchy whose leaves surround each
deformed hexahedron in the current configuration. To prevent false
positives, we do not look in the 27 hexahedra in the one ring of the
proxy point in material coordinates. Each hexahedron deemed near
a given proxy point is then tetrahedralized to barycentrically deter-

Figure 5: Collisions and especially self-collisions drastically im-
prove the quality of deformation when coupled with elasticity. On
the left is a production rig that qualitatively exhibits the right
look but does not resolve collisions. On the right is our method
which resolves self-collisions producing a much more natural look.
c©Disney Enterprises, Inc.



mine the proxy point’s material location. For each material point,
we query a level set stored in the undeformed configuration: φ0.
If there are multiple negative φ0 values, we use the location with
φ0 closest to zero to compute the closest point on the undeformed
surface. We then look up the deformed position of the closest sur-
face point (xs) to estimate the penetration depth as |xs − xp| and
outward unit normal as n = (xs − xp) / |xs − xp|.

Collision response For both self-collision and solid object col-
lision scenarios, we instantiate a zero rest-length spring from the
proxy point to the closest point on the surface. The Young’s mod-
ulus of this spring is allowed to be anisotropic in the direction
of the unit collision normal. Specifically, the spring force arises
from the energy Ψ(xp,xs) = k(xp − xs)

TM(xp − xs)/2 where
M = (1− α) nnT + αI, with α ∈ [0, 1]. α = 1 corresponds
with a traditional isotropic spring; α = 0 results in a standard point
repulsion. This anisotropic conception of the stiffness allows for
sliding in the plane orthogonal to the penetration direction. In prac-
tice we found α ∈ [.1, .5] worked best for self collisions and α = 0
was sufficient for object collisions.

8 Multigrid

To ensure that our method scales to high resolutions, we solve the
equations of elasticity using a multigrid technique. In fact, we ex-
plored two possible approaches: the first option is to construct a
multigrid cycle purely as a solver for the linear system (8) gen-
erated in every Newton-Raphson step. The other possibility is to
implement a fully nonlinear multigrid cycle, based on the Full Ap-
proximation Scheme (FAS) which would replace and accelerate the
entire sequence of Newton iterations. This section details several
design subtleties, and algorithmic modifications that were neces-
sary to efficiently implement these two multigrid schemes.

Domain description Our discretization is based on a voxelized
representation of the elastic body. At any given resolution, a cubic
background lattice is defined and its cells are labeled either internal
or external depending on any material overlap with the embedded
deforming body. Internal cells can optionally be labeled as con-
strained (or Dirichlet) if the trajectories of their nodes will be spec-
ified as hard kinematic constraints. The Lamé coefficients µ and
λ can be specified for each individual cell, allowing for inhomo-
geneous models. The coarser domains of a multigrid hierarchy are
generated by a simple binary coarsening strategy. Similar to [Zhu
et al. 2010] a label of constrained, internal or external is assigned
in this order of priority, if fine children with more than one type
are present. The Lamé parameters of coarse interior cells are com-
puted by summing the µ or λ of any interior children, and dividing
by eight; thus coarse cells overlapping with the boundary receive
lower material parameters, to account for the partial material cov-
erage of the cell.

Elasticity coarsening A multigrid method requires us to gen-
erate a hierarchy of discretizations. Specifically, if we use multi-
grid to solve the linear system (8), different versions of K, denoted
by Kh,K2h,K4h, . . . need to be computed for every level of the
multigrid hierarchy. We specifically avoid the Galerkin coarsen-
ing strategy since it requires forming the stiffness matrices explic-
itly. The alternative is a matrix-free approach which constructs K2h

from a re-discretization of our problem at the coarse grid. We can
repeat the same process followed at the fine grid, and define coarse
forces f2h(x2h) = −∂Ψ2h/∂x2h as well as a coarse stiffness
K2h = ∂f2h/∂x2h and encode these in a matrix-free fashion as
before. The challenge however is that the entries in K2h depend
on the current estimate of the solution and, more accurately, on a

coarse grid version x2h of this estimate. The general methodol-
ogy is to define yet another restriction operator R̂ (possibly differ-
ent than the one used to restrict residuals) to downsample the solu-
tion estimate as x2h = R̂xh. However, as a consequence of our
geometric domain coarsening described in the previous paragraph,
the discrete domain grows in size, as coarse cells with any interior
children will now be considered fully interior, even if they include
some exterior cells from the fine grid. Therefore, restricting the
approximation xh would require extrapolation of the deformation
field. We found such extrapolations to be quite unstable, especially
in the presence of collisions, and sometimes even ill-defined near
concave, high curvature boundaries.

Our solution is based on the observation that the entries of K do
not depend directly on the positions x, but only through the defor-
mation gradient F. Note that this is also true for our stabilized dis-
cretization; the part K∆ of the stiffness matrix due to Ψ∆ is a con-
stant matrix, not dependent on positions at all. The auxiliary part
Kaux due to Ψaux is fully determined by the discrete deformation
gradient Fe at every cell. Thus, instead of restricting xh → x2h

we instead downsample the deformation gradient as Fh → F2h,
which is done with simple weighted averaging. Once the stiffness
matrices have been constructed for all levels, the V-Cycle described
in Algorithm 2 is used to solve the linearized Newton equation. The
restriction and prolongation operators are constructed based on tri-
linear interpolation. Since we do not explicitly construct K, we use
a Jacobi smoother instead of a Gauss-Seidel one, since for the Ja-
cobi procedure all force differentials may be computed in parallel.
Note however that the elasticity matrix is not diagonally dominant,
and the Jacobi procedure needs to be damped for stable conver-
gence. We found that the damping coefficient could safely be as
high as 0.8 in the interior of the object, while values of 0.3 − 0.4
were more appropriate near the boundary, near soft constraints, and
for higher values of Poisson’s ratio.

Algorithm 2 Linear Multigrid V(1,1) Cycle for equation (8)

1: procedure LINEARVCYCLE
2: bh ← fh(xh) + gh

3: for l = 0 to L−1 do . total of L+1 levels
4: Smooth(K2lh,δx2lh,b2lh)
5: r2lh ← b2lh −K2lhδx2lh

6: b2l+1h ←Restrict(r2lh), δx2l+1h ← 0
7: end for
8: Solve δx2Lh ← (K2Lh)−1b2Lh

9: for l = L−1 down to 0 do
10: δx2lh ← δx2lh+Prolongate(δx2l+1h)
11: Smooth(K2lh,δx2lh,b2lh)
12: end for
13: end procedure

Point constraint coarsening Each soft constraint and active col-
lision proxy is copied to the coarse grids based on its material loca-
tion. Its associated stiffness modulus is scaled by a factor of .125
(or .25 in 2D) to accommodate its embedding in a larger element.
Otherwise, the coarsened proxies are then treated in the same man-
ner at every level of the hierarchy.

Nonlinear multigrid We also implemented a fully nonlinear
multigrid solver, based on the Full Approximation Scheme (FAS)
approach. As before, the challenge is that the nonlinear force op-
erator requires a coarse grid version of the solution estimate. Once
again, the operator only depends on x through the deformation gra-
dient; unfortunately the deformation gradient does not stay fixed



through smoothing and v-cycles, requiring constant updates. We
consider the restricted value of the deformation gradient as an “off-
set” (denoted by Foff) and change our state variables for the coarser
grids from positions (x) to corrections (u) from this offset. We
compute the updated deformation as F = Foff +G[u], where G is
the cell-centered gradient operator. The nonlinear forces computed
based on this updated gradient are fh(Fhoff;u

h). The FAS proce-
dure is outlined in Algorithm 3. Damped Jacobi is used, albeit with
re-linearization steps inserted between every 2-3 Jacobi iterations.

Algorithm 3 FAS V-Cycle for nonlinear equilibrium equation

1: procedure FASVCYCLE(fh(Fhoff;u
h) + gh = 0)

2: NONLINEARSMOOTH(fh(Fhoff;u
h) + gh = 0)

3: F2h
off ← R̂(Fhoff + Gh[uh]),u2h ← 0

4: g2h ← −f2h(F2h
off;u

2h) + R(fh(Fhoff;u
h) + gh)

5: SOLVE(f2h(F2h
off;u

2h) + g2h = 0) . By recursive call
6: uh +=Prolongate(u2h)
7: NONLINEARSMOOTH(fh(Fhoff;u

h) + gh = 0)
8: end procedure

Our experiments with the fully nonlinear FAS cycle exhibited sig-
nificant acceleration in certain tasks, but was somewhat more ques-
tionable in terms of cost/performance for our typical use scenario.
In particular, when solving for the equilibrium shape following a
very sudden skeletal motion (such as fully curling an arm from a
full extension, all in a single frame), the FAS scheme was able to
converge in just a few cycles, while the linear multigrid approach
would typically necessitate a large number of Newton iterations
(even though each linear system was adequately solved). How-
ever, in our typical use, the skeletal motion was relatively incre-
mental, and 1-2 Newton iterations would provide an excellent so-
lution estimate, with 1-2 linear V-cycles as the underlying linear
solver. Since the linear cycle is less expensive due to less frequent
re-linearization, this approach was overall a better cost/performance
choice for our specific application. Additionally, in the presence
of collisions, extreme skeletal motions within a single frame were
problematic, since the penalty-based collisions would easily be-
come tangled in nonphysical configurations. Lastly, we observed
that the ability of FAS to make large corrections towards the solu-
tion often times had the side effect of sometimes jumping between
different local minima, especially in highly buckled configurations.
This behavior can be controlled by augmenting FAS with a line-
search step to prevent it from tunneling to different minima, but
again this was not a priority for our target application.

9 Optimization

CPU. To improve performance on the CPU we utilized multithread-
ing using a task queue. We designed our access patterns to be cache
friendly by using blocking techniques. We also exploited SSE data
level parallelism for the SVD computation. Additionally, we used
templatization to optimize stride multiplication computations in ar-
ray accesses. Constraint contributions to the matrix were baked into
a structure that minimized indirection.

GPU. Since GPUs have become popular for parallel numerical al-
gorithms, we did a naı̈ve port of our CPU oriented code to the GPU.
Our expertise at optimizing for the GPU’s different bandwidth ver-
sus computation tradeoffs was limited, and we hope to utilize the
grid optimization techniques of [Dick et al. 2011] in the future.

We benchmarked our elasticity multigrid solver on a cube model
with Dirichlet constraints on two opposite faces without collisions
or point constraints. While we were able to attain a convergent

method with as few as 2 Jacobi smoothing sweeps per grid trans-
fer, we were able to achieve the best balance between speed and
convergence rate with 5-10 Jacobi relaxation sweeps. In all cases,
the first V-cycles significantly (by 1-2 orders of magnitude) lowered
the residual before settling into a constant convergence rate between
0.5 and 0.75, depending on the number of relaxation sweeps. On a
32 × 32 × 32 element cube, we averaged 0.031s on the GPU and
0.10s on the CPU per V-cycle with 10 relaxation sweeps per grid
transfer on 4 levels. On a 64× 64× 64 element cube, we averaged
0.086s on the GPU and 0.56s on the CPU per V-cycle with 10 relax-
ations sweeps on 5 levels. In practice, we found that 1-2 V-cycles
were sufficient for the Newton-Raphson solver to converge.

9.1 Diagonal part of stiffness matrix

The Jacobi iteration used as the smoother in our multigrid scheme
requires explicit knowledge of the diagonal part of the stiffness ma-
trix K. Since we never construct this matrix explicitly, a specialized
process needs to be followed to compute the diagonal part directly
and efficiently. We will provide the final result here, and refer the
interested reader to the accompanying technical document for the
detailed algebraic derivation. For element Ωe we will define the
contribution of each of the 24 degrees of freedom to the diagonal
part of K. In particular, we turn our attention to the degree of free-
dom x

(j)
i , that is the j-th component of the i-th element vertex,

where i ∈ {1, . . . , 8}. Also, define g to be the i-th column of
the discrete gradient G, and rT the j-th row of R. Also, define
Mi = E : g (i.e. the right-side cross product matrix with g). Also
define Ni = λggT + MT

i LMi. where L was defined in section 5.
The diagonal contribution of Ωe to the diagonal part corresponding
to degree of freedom x

(j)
i is 3

2µ/h
2 + rTNir. We can verify that

the diagonal entries corresponding to antidiametric vertices (e.g. x1

and x8) are equal; thus the diagonal entry need only be computed
for the components of 4 out of the 8 vertices of the element. Finally
Mi can be precomputed, we only need to consider i = 1, . . . , 4 as
we explained, and these matrices are identical for all elements.

9.2 Fast Singular Value Decomposition

Our method makes use of the Singular Value Decomposition F =
UΣVT to define the matrix L, and in fact we use it to construct the
rotational factor of the Polar Decomposition as well, as R = UVT .
The cost of the 3 × 3 SVD is commonly acknowledged as a bot-
tleneck for corotational or shape matching methods. We introduce
a new, and highly efficient methodology which is virtually branch-
free (other than the use of conditional assignments, which is an
atomic instruction in SSE4.1 and other platforms), uses no expen-
sive arithmetic other than addition, subtraction, multiplication and
an inexact square root (i.e. the SSE VRSQRTPS instruction), and is
trivially and extensively vectorizable. We ultimately obtain a cost
per decomposition equal to 11ns on a 12-core X5650 workstation,
using SSE and multithreading in conjunction.

The core cost of the SVD analysis is commonly reported to be the
symmetric eigenanalysis. An iterative Jacobi diagonalization pro-
cedure is often used to bring the symmetric matrix S = FTF into
diagonal form. Instead of the exact Givens conjugation used in the
Jacobi procedure, we define an approximate Givens angle, which
can be obtained with minimal computation. The optimal Givens
angle that annihilates element s21, for example is known to satisfy
tan(2θ) = 2s12/(s11 − s22). Instead of using an inverse trigono-
metric function (or the alternative approach of solving a quadratic
equation), we consider the following asymptotic approximation,
valid when θ is small:

2s12

s11 − s22
= tan(2θ) ≈ 4 tan(

θ

2
)⇒ sin(θ/2)

cos(θ/2)
≈ s12

2(s11 − s22)



Figure 6: Top: A hand rigged using linear blend skinning. Due to the many joints it is impractical to model all the shapes necessary fix the
artifacts using an example based technique like PSD. To compensate, a significant amount of effort was spent on creating a nice skin bind
for this hand. Bottom: The same hand rigged with our elasticity based deformer using 117,607 non-empty cells. Note how we get correct
creasing and contact deformation where the finger bends. c©Disney Enterprises, Inc.

At this point, we observe that this approximate rotation can be
stored as the un-normalized quaternion (2(s11 − s22), 0, 0, s12),
eliminating the need for divisions or exact normalizations. In fact,
we do perform an inexact normalization using the approximate
VRSQRTPS SSE instruction, merely for the purpose of avoiding
overflow, and without this inaccuracy affecting the semantics of the
quaternion. However, the asymptotic approximation does not hold
for arbitrary θ, and it would be possible that the off-diagonal ele-
ment would not be reduced (let alone, annihilated) for certain cases.
However, we can show that the best of either the above approxima-
tion or a choice of θ = π/4 is guaranteed to reduce the magnitude
of the off diagonal element s12 by at least a factor of 0.6 per appli-
cation. Deciding which one to use is made with a simple algebraic
check, as shown in Algorithm 4.

Algorithm 4 Computation of approximate Givens quaternion.

1: const γ ← 3 + 2
√

2, c∗ ← cos(π/8), s∗ ← sin(π/8)
2: function APPROXGIVENSQUATERNION(a11, a12, a22)
3: ch ← 2(a11−a22) . ch ≈ cos(θ/2)
4: sh ← a12 . sh ≈ sin(θ/2)
5: b← [γs2

h < c2h] . b is boolean
6: ω ← RSQRT(c2h + s2

h) . RSQRT(x) ≈ 1/
√
x

7: ch ← b?ωch:c∗
8: sh ← b?ωsh:s∗
9: return (ch, 0, 0, sh) . returns a quaternion

10: end function

Once the matrix S has been brought closer to a diagonal, our
asymptotic approximation becomes extremely accurate, and essen-
tially matches the efficiency of regular Jacobi iteration (but at a frac-
tion of the implementation cost). We have invariably observed that
4 sweeps of our method offer the same efficacy in diagonalizing S
as 3 sweeps of the regular Jacobi method, and this brings the magni-
tude of off-diagonal entries to 4-5 order of magnitude smaller than
the singular values on the diagonal. Once the symmetric eigenanal-
ysis has been computed, we robustly compute the rotational factor
U by performing a Givens QR factorization on AV = UΣ, which
generates an exactly orthogonal factor Q = U and a triangular fac-
tor R which will in fact be diagonal (and equal to Σ) as long as
the columns of UΣ are sorted in descending order of magnitude by
permuting them along with the columns of V.

We contrast this procedure to the simpler approach that computes

Figure 7: Residual reduction |rk|∞/|r0|∞ per V-cycle or CG it-
eration for a number of examples. In practice 1-3 V-cycles were
necessary for each Newton-Raphson update.

the rotational factor as R = FS−1, as demonstrated for example
in [Rivers and James 2007]. Although quite efficient, such a treat-
ment is not robust for our intended simulation task, where flattened
or inverted elements are commonplace; in the case of an inverted el-
ement, where det(F) < 0 the formula R = FS−1 would produce
a matrix R that includes a reflection (i.e. det(R) = −1) which
violates the proper semantics of the corotated formulation, and in-
hibits untangling of inverted elements in practice. Similarly, for
flattened elements the factor S is near-singular, which jeopardizes
the orthogonality of the computed matrix R. Methods that produce
the polar decomposition robustly in the case of singular or inverted
F (using cross products to generate perfect rotations) will typically
resort to case analysis, preventing effective vectorization. In con-
trast, our Givens QR factorization has a completely deterministic
control flow and is trivially vectorized. See our supplemental tech-
nical document for full analysis, implementation, and comparison
with existing iterative and closed form solvers.

10 Results

We tested our full system on a number of production-quality mod-
els, focusing on regions where artists typically struggle to achieve
realistic, collision-free results using traditional rigging methods.
Our simulation is driven by rigid bones attached to the character’s
existing skeleton. Simple geometric shapes such as cylinders or el-
lipsoids are sufficient to define the volumetric extent of these bones,
and we found that using soft constraints with narrow bones gave
the elasticity model freedom to produce appealing flesh-like shapes.



Figure 8: A common problem with many existing techniques (and linear blend skinning in particular) is that it can be very difficult to maintain
the illusion of an underlying bone-structure. As an example the top row here shows how the integrity of the region around the clavicle is lost
as the character shrugs. In the bottom row, however, everything behaves as a connected entity. On the outside of the elbow we also get a
nice protrusion of the ulna with our method as opposed to the more rubber-like behavior of the linear blend skin. (30,904 non-empty cells)
c©Disney Enterprises, Inc.

More carefully modeled bones can be used as internal collision ob-
jects over which the material can slide, providing detail in regions
such as the elbow or around the collarbone. We allowed additional
artistic control by providing the ability to spatially vary µ and λ.
The hexahedral lattice is constructed as an axis-aligned grid with
uniformly sized cells in the undeformed configuration.

10.1 Examples

In all examples, we found that 1-2 V-cycles with 5 relaxation
sweeps per grid transfer were sufficient for the linear solver. The
number of Newton iterations required depended on our initial
guess; when using the previous frame of an animation, we typi-
cally required between 1 and 10 iterations for full convergence. All
reported CPU times were computed on an 8-core Intel Xeon X5550
workstation. GPU tests were performed on an NVIDIA Quadro
6000. In our first example, we applied our deformer to the arm,
shoulder and neck region of a character (see Fig. 8). Each Newton
iteration averaged 0.492s on the CPU and 0.345s on the GPU. Our
average frame times were 3.22s and 2.38s on the CPU and GPU
respectively. In Figure 6, we demonstrate our method on a charac-
ter hand. On the CPU, we averaged 1.40s per Newton iteration for
an average of 12.6s per frame. On the GPU, each Newton iteration
averaged 0.612s for an average of 5.74s per frame. In Figure 1 we
apply our deformer to the torso and arms of a large character with
106,567 elements. On the CPU, each Newton iteration averaged
0.876s for a total of 5.48s per frame. Our GPU implementation
averaged 0.762s per Newton iteration and 5.14s per frame.

In Figure 7, we compare convergence rates per V-cycle or conjugate
gradients iteration. We suspect the initial “bump” in residual reduc-
tion per V-cycle is due to the efficiency of our Jacobi smoother. A
constant convergence rate emerges for all multigrid examples, in
contrast with CG.

11 Discussion

Originally, we were motivated by the desire to make true physi-
cally based elasticity practical for production character rigging. We
found that beyond our expectations, artists were impressed with the
shapes a physical deformer could provide with little manual effort.
What usually took days of weight painting or pose example sculpt-

ing was now easy to achieve, and what was impossible, collision
and contact, was now possible.

A major decision in our project was to focus on optimizing for the
CPU, because we were familiar with CPU optimization and because
simulations often need to run on clusters without GPUs. At the
same time we recognize GPUs are becoming more important be-
cause of their power and we sought to experiment with the GPU.
Though we have little experience with the GPU, we believe our
method will perform even better on the GPU with further optimiza-
tions. Further, we note that most GPU experiments tend to compare
against relatively unoptimized CPU implementations, whereas our
CPU implementation was heavily optimized.

Obviously, speed has been a major hurdle for the use of physical
simulation in production, so the fact that our simulations can run at
near-interactive rates changes the game for artists. Even so, there is
plenty of future work to do. One area is making the parameters (e.g.
Young’s modulus) more intuitive for artists to control, and another
is allowing art direction in other ways, such as optimized control
(which also requires fast solvers). Robustness could be improved
by using more accurate self-collision methods and a more accurate
initial guess. Finally, our solver does not support near incompress-
ible materials, and we would be interested in exploring additional
features such as material anisotropy. But even without this future
work, we believe that our contribution will help create the next gen-
eration of appealing characters.
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